第五百章 神光工程-《学霸的科幻世界》


    第(1/3)页

    回到江城后,庞学林的生活再次变得平静下来。

    偶尔去江城大学或者西湖大学上上课,和曹源、李长青他们讨论一下超导128材料的工业化生产方案,剩下的时间,庞学林将注意力放在了n-s方程存在性与光滑性的研究上。

    如今超导材料问题已经解决,可控核聚变领域,就剩下超大功率激光器、超高温等离子流体控制这两大技术难关了。

    高强度的抗辐照材料庞学林倒不担心,他决定一步到位采用氦核聚变模式,可以大幅度降低中子的产生。

    因此,目前国内核裂变反应堆所生产的抗辐照材料完全能够满足氦核聚变反应堆的需求。

    剩下的,超大功率激光器制造,这个项目主要交由中国工程物理研究院激光聚变研究中心负责推动。

    从上世纪60年代开始,激光器的发明,为如何将物质加热到极高能量这一问题打开了一条门缝。

    最早是苏联专家开始考虑使用激光加热核聚变的原料,因为该方法能量大,而且无需与被加热物质接触,简单理解就是类似于拿阳光聚焦之后点燃木屑。

    但是单个激光器的能量太低,所以为了解决这样的问题,需要将多个激光器的能量聚焦于同一点。

    该问题看似简单,实则非常困难。

    因为必须保证在短暂的加热时间内,被加热物体的所有方向受热均匀,一致向球心坍缩(简单理解就是将被加热物质想象成一个足球,如果想要挤压足球内部的空气,最好的方法就是从四面八方一起用力,使其体积被压缩。如果仅仅从两个方向使劲,则足球会变形,足球内部的空气被挤压效果就会大打折扣)。

    这不仅需要每个激光器对准的方向控制地异常精确,也需要在这一极短的时间内每个激光器的能量大小需要严格控制。

    目前在该领域美国的研究进展是最快的,其国家点火装置(nif)目前正在实验将192个激光器聚焦于同一点,包含192束激光,输出1.8mj紫外激光。

    与nif装置规模相当的激光驱动器是法国的lmj激光装置,设计包含240束激光,输出1.8mj紫外激光。
    第(1/3)页